100 Gigahertz Graphene Transistors

Tagged: IBM, Transistors, Computer Hardware, Technology
Source: Technology Review - Read the full article
Posted: 4 years 41 weeks ago

IBM has created graphene transistors that leave silicon ones in the dust. The prototype devices, made from atom-thick sheets of carbon, operate at 100 gigahertz--meaning they can switch on and off 100 billion times each second, about 10 times as fast as the speediest silicon transistors.

The transistors were created using processes that are compatible with existing semiconductor manufacturing, and experts say they could be scaled up to produce transistors for high-performance imaging, radar, and communications devices within the next few years, and for zippy computer processors in a decade or so.

Researchers have previously made graphene transistors using laborious mechanical methods, for example by flaking off sheets of graphene from graphite; the fastest transistors made this way have reached speeds of up to 26 gigahertz. Transistors made using similar methods have not equaled these speeds.

Growing transistors on a wafer not only leads to better performance, it's also more commercially feasible, says Phaedon Avouris, leader of the nanoscale science and technology group at the IBM Watson Research Center in Ossining, NY where the work was carried out.

Ultimately, graphene has the potential to replace silicon in high-speed computer processors. As computers get faster each year, silicon is getting closer and closer to its physical limits, and graphene provides a promising potential replacement because electrons move through the material much faster than they do through silicon. "Even without optimizing the design, these transistors are already 2.5 times better than silicon," says Yu-Ming Lin, another researcher at IBM Watson who collaborated with Avouris.

Other researchers have made very fast transistors using expensive semiconductor materials such as indium phosphide, but these devices only operate at low temperatures. In theory, graphene has the material properties needed to let transistors run at terahertz speeds at room temperature.... (Read More)